Aller au contenu principal

Electrochimie Moléculaire et Photochimie Redox

Overview 

The EMPRe team conducts research in the field of molecular electrochemistry and redox photochemistry toward the understanding of bond activation trigerred by electron transfer. Within this framework, we are developing and analyzing electrochemical and photoinduced redox catalytic processes in homogeneous solution and on surfaces. Students in the EMPRe team are trained in synthesis of ligands, transition metal complexes or organic dyes. Then, they apply methods of molecular electrochemistry (cyclic voltammetry, electrolysis), spectroelectrochemistrysurface modification (electropolymerization, electrodeposition) to study mechanisms of electro/photo-catalytic processes. In this context, we are investigating in particular small molecules activation (such as H2O, CO2, N2O) as well as proton-coupled electron transfer processes... To provide a rational approach to mechanistic study and an inteligent design of molecular catalysts, we are developing kinetic and theoretical models related to cyclic voltammetry and electro-photo-catalytic processes.

logo equipe Empre

Permanent researchers

Sylvie Chardon (DR CNRS), Marie-Noëlle Collomb (DR CNRS), Cyrille Costentin (PR UGA), Jérôme Fortage (CR CNRS), Eric Saint-Aman (PR UGA)

Awards

2023 Innovation Prize from the Division Chimie Physique of the Société Chimique de France to Marie-Noëlle Collomb and her team
2023 Master 1 internship Prize from the Electrochemistry Subdivision of the Société Chimique de France awarded to Alexandra Collard
2022 Senior Researcher Prize from the Division Chimie Physique of the Société Chimique de France awarded to Cyrille Costentin

Research activities

Controlled Potential Electrolysis: Transition from Fast to Slow Regimes in Homogeneous Molecular Catalysis. Application to the Electroreduction of CO2 Catalyzed by Iron Porphyrin.
R. Deeba, A. Collard, C. Rollin, F. Molton, S. Chardon-Noblat, C. Costentin*
ChemElectroChem, 2023, e202300350
10.1002/celc.202300350

Hybrid catalyst to the rescue.
C. Costentin*
Nat. Synth., 2023
10.1038/s44160-023-00391-7

Importance of Ligand Exchange in the Modulation of Molecular Catalysis: Mechanism of the Electrochemical Reduction of Nitrous Oxide with Rhenium Bipyridyl Carbonyl Complexes.
R. Deeba, S. Chardon-Noblat*, C. Costentin*
ACS Catal., 2023, 13, 8262-8272
10.1021/acscatal.3c01495

Deciphering Reversible Homogeneous Catalysis of the Electrochemical H2 Evolution and Oxidation: Role of Proton Relays and Local Concentration Effects.
B. Reuillard, C. Costentin*, V. Artero*
Angew. Chem. Int. Ed., 2023, e202302779
10.1002/anie.202302779

Disulfide radical anion as a super-reductant in biology and photoredox chemistry.
Q. Zhu*, C. Costentin, J. Stubbe, D. G. Nocera*
Chem. Sci., 2023, 14, 6876-6881
10.1039/D3SC01867A

Enhanced activity for the oxygen reduction reaction in microporous water.
A. E. Thorarinsdottir, D. Erdosy, C. Costentin*, J. A. Mason*, D. G. Nocera*
Nat. Catal., 2023, 6, 425-434
10.1038/s41929-023-00958-9

2022electrocatalysis.jpg

Behavior of Iron Tetraphenylsulfonato Porphyrin Intercalated into LDH and LSH as Materials for Electrocatalytic Applications.
A. Tarhini, J. Aguirre-Araque, M. Guyot, C. Costentin, R. Rogez*, S. Chardon-Noblat*, V. Prevot, C. Mousty*
Electrocatalysis, 2023, 14, 111-120
10.1007/s12678-022-00778-8

2022molecules2.jpg

Electrochemical properties of a Rhodium(III) mono-terpyridyl complex and use as a catalyst for light-driven hydrogen evolution in water.
F. Camara,T. Gavaggio B. Dautreppe, J. Chauvin, J. Pécaut, D. Aldakov, M.-N. Collomb*, J. Fortage*
Molecules, 2022, 27(19), 6614
10.3390/molecules27196614 
hal.archives-ouvertes.fr/hal-03808904

images_large_ic2c02473_0015.jpeg

Effect of Substituents Mimicking Anchorage of Rhenium Carbonyl Bipyridine Molecular Catalysts on CO2 Electroreduction
M. Guyot, M-N. Lalloz, J. S. Aguirre-Araque, G. Rogez, C. Costentin*, S. Chardon-Noblat*
Inorg. Chem., 2022, 61, 16072-16080
10.1021/acs.inorgchem.2c02473

2022acsmeasur.jpeg

Electrochemical Mechanistic Analysis from Cyclic Voltammograms Based on Deep Learning.
B. B. Hoar, W. Zhang, S. Xu, R. Deeba, C. Costentin*, Q. Gu*, C.Liu*
ACS Meas. Sci. Au, 2022, 2, 55-604
10.1021/acsmeasuresciau.2c00045

2022chemmater.jpeg

Photochromic Metallopolymer Based on Dithienylethene as a Molecular Calculator.
E. Chatir, A. Khettabi, F. Lafolet, D. Jouvenot, G. Royal, E. Saint-Aman, S. Cobo*
Chem. Mater., 2022, 34, 5912-5918
10.1021/acs.chemmater.2c00819

2022acscatal.jpg

Photoinduced Catalysis of Redox Reactions, Turnover Numbers, Turnover Frequency and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production.
C. Costentin*, F. Camara, J. Fortage, M.-N. Collomb
ACS Catal.. 2022, 12, 6246-6254.
10.1021/acscatal.2c01289
hal.archives-ouvertes.fr/hal-03766011

2022pnas.png

Proton Coupled Electron Transfer of Macrocyclic Ring Hydrogenation: The Chlorinphlorin.
R. Sun, M. Liu, S-L. Zheng, K. D. Dogutan*, C. Costentin*, D. G. Nocera*
Proc.Natl. Acad. Sci USA, 2022, 119, e2122063119
10.1073/pnas.2122063119

2022ecsadv.jpg

Photoredox Processes in the Aggregation and Gelation of Electron- Responsive Supramolecular Polymers Based on Viologens
C. Roizard, V. Andrieux, S. Al Shehimy, S. Chowdhury, Q. Reynard-Feytis, C. Kahlfuss, E. Saint-Aman, F. Chevallier, C. Bucher*, T. Gibaud*, D. Frath*
ECS Adv., 2022, 1, 020502
10.1149/2754-2734/ac6ad4

2022chemmater2.gif

p-Block Metal-Oxide Noninnocence in the Oxygen Evolution Reaction in Acid: The Case of Bismuth Oxide.
A. E. Thorarinsdottir, C. Costentin, S. S. Veroneau, D. G. Nocera*
Chem. Mater., 2022, 34, 826-835
10.1021/acs.chemmater.1c03801

Publié le 21 mars 2018

Mis à jour le 12 février 2024