• Bienvenue au DCM


    Le Département de Chimie Moléculaire de Grenoble est une unité mixte de recherche (UMR-5250) associant le CNRS et l’Université Grenoble Alpes. Créé le 01 Janvier 2007 par le regroupement des unités LEDSS (UMR-5616) et LEOPR (UMR-5630), le DCM mobilise environ 150 personnes autour de deux axes de recherches interactifs qui sont la chimie pour la santé et la chimie pour les nanosciences.

  • BEA

    Biosystèmes Electrochimiques et Analytiques

  • I2BM

    Ingénierie et Interactions BioMoléculaires

  • Chimie Inorganique Redox

    CIRE laboratory develops its research in the fields of molecular electrochemistry and redox photochemistry. We design molecular architectures with diverse functionalities often inspired by a bio-mimetic approach. Our work is directed towards both fundamental research(switchable systems, artificial photosynthesis, metal-radical coupling) and practical applications (nano-chemical devices, inhibitors development).

  • SeRCO

    Synthèse et Réactivité en Chimie Organique

  • Spectrométrie, Interactions, Chimie Théorique

    Expertise in the field of theoretical chemistry and experimental mass spectrometry :
    At the upper right, study of alkynes activation by Au(I) complexes with the help of Mass spectrometry; At the bottom in the left, TD-DFT development for the photochemistry ; At the bottom in the middle QM/MM Studies of Tyrosinase inhibitors ; At the right modelization of the reactivity in solution 

1/

Agenda

ZOOM

ZOOM Tackling the Challenges of Enzymatic (Bio)Fuel Cells
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.