ROLF DAVID
Chaire de professeur junior (CNRS)
- Imprimer
- Partager
- Partager sur Facebook
- Share on X
- Partager sur LinkedIn
SITh
Thèmes de recherche
- Reactivity: mechanism, thermodynamics & kinetics
- Condensed phase & Interfaces (Solid Liquid/Liquid-Gas)
- Solvent / Solutes / Ions interactions
- Spectroscopies (IR, vSFG)
- Dialogue theory experience in the field of reactivity and spectroscopy
- Machine Learning for Chemistry (Neural Network-based reactive Force-Fields (NNP) & generation of data)
- Main instigator of the ArcaNN project https://github.com/arcann-chem
- Enhanced Sampling & Free Energy Calculations
- Code development (Analysis, spectroscopy, AI)
- Transition Path Sampling (TPS)
- Density Functional Theory (DFT)
- Molecular Dynamics (MD)
- Quantum Mechanics/Molecular Mechanics (QM/MM)
Publications
P1. David, R.*; de la Puente, M.; Gomez, A.; Anton, O.; Stirnemann, G.; Laage, D. ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Submitted.
arXiv: https://doi.org/10.48550/arXiv.2407.07751
P2. Golam, A.; Milet, A.; David, R.*; Kumar, R.* From Graphene Oxide to Graphene: Changes in Interfacial Water Structure and Reactivity Using Deep Neural Network Force Fields. J. Phys. Chem. C 2024, acs.jpcc.4c03444. https://doi.org/10.1021/acs.jpcc.4c03444.
P3. David, R.; Tuñón, I.; Laage, D.* Competing Reaction Mechanisms of Peptide Bond Formation in Water Revealed by Deep Potential Molecular Dynamics and Path Sampling. J. Am. Chem. Soc. 2024, 146 (20), 14213–14224. https://doi.org/10.1021/jacs.4c03445.
ChemRxiv: https://doi.org/10.26434/chemrxiv-2024-tfk5v
P4. Gomez, A.†; de la Puente, M.†; David, R.; Laage, D.* Neural network potentials for exploring condensed phase chemical reactivity. C. R. Chim. 2024. https://doi.org/10.5802/crchim.315. († contributed equally)
ChemRxiv: https://doi.org/10.26434/chemrxiv-2024-9j85m-v2
P5. Benayad, Z.†; David, R.†; Stirnemann G.* Prebiotic Chemical Reactivity in Solution with Quantum Accuracy and Microsecond Sampling Using Neural Network Potentials. Proc. Natl. Acad. Sci. 2024, 121 (23), e2322040121. https://doi.org/10.1073/pnas.2322040121). († contributed equally)
ChemRxiv: https://doi.org/10.26434/chemrxiv-2023-8c1mt
P6. Subasinghege Don, V.; Kim, L.; David, R.; Nauman, J. A.; Kumar, R.* Adsorption Studies at the Graphene Oxide – Liquid Interface: A Molecular Dynamics Study. J. Phys. Chem. C 2023, 127, 5920−5930 https://doi.org/10.1021/acs.jpcc.2c07080.
P7. Tsai, E.; Gallage Dona, H. K.; Tong, X.; Du, P.; Novak, B.; David, R.; Rick, S. W.; Zhang, D.; Kumar, R.* Unraveling the Role of Charge Patterning in the Micellar Structure of Sequence-Defined Amphiphilic Peptoid Oligomers by Molecular Dynamics Simulations. Macromolecules 2022, 55 (12), 5197–5212 https://doi.org/10.1021/acs.macromol.2c00141.
P8. de la Puente, M.; David, R.; Gomez, A.; Laage, D.* Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air–Water Interfaces Depend on Depth and on Interface Specific Area. J. Am. Chem. Soc. 2022, 144 (23), 10524–10529. https://doi.org/10.1021/jacs.2c03099.
P9. Sun, L.; Adam, S. M.; Mokdad, W.; David, R.; Milet, A.; Artero, V.*; Duboc, C.* A Bio-Inspired Heterodinuclear CoFe Complex of the Hydrogenases. Faraday Discuss. 2022 234, 34–41. https://doi.org/10.1039/D1FD00085C.
P10. David, R.; Kumar, R.* Reactive Events at the Graphene Oxide–Water Interface. Chem. Commun. 2021, 57 (88), 11697–11700. https://doi.org/10.1039/D1CC04589J.
P11. Li, K.; Subasinghege Don, V.; Gupta, C. S.; David, R.; Kumar, R.* Effect of Anion Identity on Ion Association and Dynamics of Sodium Ions in Non-Aqueous Glyme Based Electrolytes—OTf vs TFSI. J. Chem. Phys. 2021, 154 (18), 184505 https://doi.org/10.1063/5.0046073.
P12. David, R.; Tuladhar, A.*; Zhang, L.; Arges, C.; Kumar, R.* Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide–Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment. J. Phys. Chem. B 2020, 124 (37), 8167–8178. https://doi.org/10.1021/acs.jpcb.0c05282.
P13. Bresnahan, C. G.; David, R.; Milet, A.; Kumar, R.* Ion Pairing in HCl–Water Clusters: From Electronic Structure Investigations to Multiconfigurational Force-Field Development. J. Phys. Chem. A 2019, 123 (43), 9371–9381. https://doi.org/10.1021/acs.jpca.9b07775.
P14. Subasinghege Don, V.†; David, R.†; Du, P.; Milet, A.; Kumar, R.* Interfacial Water at Graphene Oxide Surface: Ordered or Disordered? J. Phys. Chem. B 2019, 123 (7), 1636–1649. https://doi.org/10.1021/acs.jpcb.8b10987. († contributed equally)
P15. Isaac, J. A.; Mansour, A.-T.; David, R.; Kochem, A.; Philouze, C.; Demeshko, S.; Meyer, F.; Réglier, M.; Simaan, A. J.; Caldarelli, S.; Yemloul, M.; Jamet, H.; Thibon-Pourret, A.; Belle, C.* Tetranuclear and Dinuclear Phenoxido Bridged Copper Complexes Based on Unsymmetrical Thiosemicarbazone Ligands. Dalt. Trans. 2018, 47 (29), 9665–9676. https://doi.org/10.1039/C8DT02452A.
P16. Thibon-Pourret, A.*; Gennarini, F.; David, R.; Isaac, J. A.; Lopez, I.; Gellon, G.; Molton, F.; Wojcik, L.; Philouze, C.; Flot, D.; Le Mest, Y.; Réglier, M.; Le Poul, N.; Jamet, H.; Belle, C. Effect of Monoelectronic Oxidation of an Unsymmetrical Phenoxido-Hydroxido Bridged Dicopper(II) Complex. Inorg. Chem. 2018, 57 (19), 12364–12375. https://doi.org/10.1021/acs.inorgchem.8b02127.
P17. David, R.; Jamet, H.; Nivière, V.; Moreau, Y.; Milet, A.* Iron Hydroperoxide Intermediate in Superoxide Reductase: Protonation or Dissociation First? MM Dynamics and QM/MM Metadynamics Study. J. Chem. Theory Comput. 2017, 13 (6), 2987–3004. https://doi.org/10.1021/acs.jctc.7b00126.
P18. Gennarini, F.; David, R.; López, I.; Le Mest, Y.; Réglier, M.; Belle, C.; Thibon-Pourret, A.; Jamet, H.*; Le Poul, N.* Influence of Asymmetry on the Redox Properties of Phenoxo- and Hydroxo-Bridged Dicopper Complexes: Spectroelectrochemical and Theoretical Studies. Inorg. Chem. 2017, 56 (14), 7707–7719. https://doi.org/10.1021/acs.inorgchem.7b00338.
P19. Lalaoui, N.; David, R.; Jamet, H.; Holzinger, M.; Le Goff, A.*; Cosnier, S. Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O2on Functionalized Carbon Nanotubes. ACS Catal. 2016, 6 (7), 4259–4264. https://doi.org/10.1021/acscatal.6b00797.
P20. Isaac, J. A.; Gennarini, F.; López, I.; Thibon-Pourret, A.; David, R.; Gellon, G.; Gennaro, B.; Philouze, C.; Meyer, F.; Demeshko, S.; Le Mest, Y.; Réglier, M.; Jamet, H.; Le Poul, N.*; Belle, C.* Room-Temperature Characterization of a Mixed-Valent μ-Hydroxodicopper(II,III) Complex. Inorg. Chem. 2016, 55 (17), 8263–8266. https://doi.org/10.1021/acs.inorgchem.6b01504.
P21. Rao, K. V. R.; Caiveau, N.; David, R.; Shalayel, I.; Milet, A.; Vallée, Y.* Theoretical Study, Synthesis, and Reactivity of Five-Membered-Ring Acyl Sulfonium Cations. European J. Org. Chem. 2015, 2015 (28), 6125–6129. https://doi.org/10.1002/ejoc.201500749.
- Imprimer
- Partager
- Partager sur Facebook
- Share on X
- Partager sur LinkedIn