Thermoresponsive Fluorescence Switches Based on Au@pNIPAM Nanoparticles

Despite numerous studies emphasizing the plasmonic impact on fluorescence, the design of a dynamic system allowing on-demand fluorescence switching in a single nanostructure remains challenging. The reversibility of fluorescence switching and the versatility of the approach, in particular its compatibility with a wide range of nanoparticles and fluorophores, are among the main experimental difficulties. In this work, we achieve reversible fluorescence switching by coupling metal nanoparticles with fluorophores through stimuli-responsive organic linkers. As a proof of concept, we link gold nanoparticles with fluorescein through thermoresponsive poly(N-isopropylacrylamide) at a tunable grafting density and characterize their size and optical response by dynamic light scattering, absorption, and fluorescence spectroscopies. We show that the fluorescence emission of these hybrid nanostructures can be switched on-demand using the thermoresponsive properties of poly(N-isopropylacrylamide). The described system presents a general strategy for the design of nanointerfaces, exhibiting reversible fluorescence switching via external control of metal nanoparticle/fluorophore distance.

Références

Titre
Thermoresponsive Fluorescence Switches Based on Au@pNIPAM Nanoparticles
Type de publication
Article de revue
Année de publication
2021
Revue
Langmuir
Volume
37
Pagination
10971-10978
Soumis le 21 janvier 2022