Physicochemical properties and in vitro cytotoxicity studies of chitosan as a potential carrier for Dicer-substrate siRNA.
Recently, Dicer-substrate small interfering RNA (DsiRNA) has gained attention owing to its greater potency over small interfering RNA (siRNA). However, the use of DsiRNA is restricted by its rapid degrdn. in vitro. To address this issue, chitosan nanoparticulate delivery platform for the Dicer-substrate siRNA (DsiRNA) was developed and characterized. Nanoparticles were prepd. by simple complexation and ionic gelation methods. The mean particle size of DsiRNA-adsorbed chitosan nanospheres (DsiRNA-CS NPs) prepd. by the ionic gelation method ranged from 225 to 335 nm, while simple complexation yielded DsiRNA-chitosan complexes (DsiRNA-CS complexes) ranging from 270 to 730 nm. The zeta potential of both types of nanoparticles ranged from +40 to +65 mV. TEM and AFM micrographs revealed spherical and irregular morphol. of DsiRNA-CS NPs and DsiRNA-CS complexes. ATR-FTIR spectroscopy confirmed the presence of DsiRNA in the CS NPs/complexes. Both types of nanoparticles exhibited sustained release and high binding and encapsulation (100{%}) efficiency of DsiRNA. DsiRNA-CS NPs/complexes showed low, concn.-dependent cytotoxicity in vitro. DsiRNA-CS NPs showed better stability than the complexes when stored at 4 and 25 °C. Thus, it is anticipated that CS NPs are promising vectors for DsiRNA delivery due to their stability, safety, and cost-effectiveness. [on SciFinder(R)]
Références
- Titre
- Physicochemical properties and in vitro cytotoxicity studies of chitosan as a potential carrier for Dicer-substrate siRNA.
- Type de publication
- Article de revue
- Année de publication
- 2013
- Auteurs
- Raja, Maria Abdul Ghaf, Katas Haliza, Hamid Zariyantey Abd, and Razali Nur Atiqah.
- Revue
- J. Nanomater.
- Pagination
- 653892, 11 pp.
- ISSN
- 1687-4129
Soumis le 12 avril 2018