Importance of Ligand Exchange in the Modulation of Molecular Catalysis: Mechanism of the Electrochemical Reduction of Nitrous Oxide with Rhenium Bipyridyl Carbonyl Complexes

{ Molecular catalysis of electrochemical reactions involving transition-metal complexes as catalysts requires getting a free metal coordination site to bind the substrate. It implies that the generation of a strong coordinating ligand as a product or coproduct of the reaction might be detrimental for an efficient catalysis because it can bind the metal center and block or slow down the catalytic process. This self-modulation phenomenon is revealed and illustrated via a thorough spectro-electrochemical investigation of the mechanism of the electrochemical reduction of nitrous oxide with rhenium bipyridyl triscarbonyl complexes [Re(bpy)(CO)3X]n+ (X = CH3CN, Cl–

Références

Titre
Importance of Ligand Exchange in the Modulation of Molecular Catalysis: Mechanism of the Electrochemical Reduction of Nitrous Oxide with Rhenium Bipyridyl Carbonyl Complexes
Type de publication
Article de revue
Année de publication
2023
Revue
ACS Catalysis
Volume
13
Pagination
8262-8272
Soumis le 28 août 2023