Compressibility of 2M1 muscovite-paragonite series minerals: A computational study to 6 GPa
{The muscovite–paragonite (Ms–Pg) series [K1–xNaxAl2(Si4–yAly)O10(OH)2] is a group of micas with end-members of Ms (x = 0, y ≈ 1) and Pg (x = 1, y ≈ 1). This mineral series is found in the Earth’s crust and upper mantle. The series shows a wide immiscibility gap between the end-members.Density functional theory (DFT) is used to show the compression in five models of the 2M1 polytype Ms-Pg series to 6 GPa. Bulk moduli and cell-parameter moduli were obtained from a least-square fitting of pressures and volumes to a third-order Birch-Murnaghan equation of state. Bulk-modulus values of the end-members of the series agree with the range of experimental values. Bond lengths and atomic-group geometries were studied as a function of the pressure and composition of the series by determining the moduli. Compression mechanism has been determined.The excess volumes, Vex, were higher for the Na-rich members than for the K-rich members. Vex follow a Redlich-Kister behavior. The excess free energy, Gex, was calculated isobarically in a semiempirical way: the DFT excess volume data were calculated in one experimental model (A from Roux and Hovis 1996) in a Redlich-Kister function. The Gex as a function of the composition of the Ms-Pg join of the A model show two minima with constant composition to 0.75 GPa, evolving to richer end-member compositions at greater pressures. Therefore, the solvus should increase the gap of immiscibility at high pressure.}
Références
- Titre
- Compressibility of 2M1 muscovite-paragonite series minerals: A computational study to 6 GPa
- Type de publication
- Article de revue
- Année de publication
- 2016
- Auteurs
- Hernandez-Haro, Noemi, Munoz-Santiburcio Daniel, Perez del Valle Carlos, Ortega-Castro Joaquin, Sainz-Díaz Claro I., Garrido Carlos J., and Hernández-Laguna Alfonso
- Revue
- American Mineralogist
- Volume
- 101
- Pagination
- 1207-1216
- Date de publication
- 05
- ISSN
- 0003-004X
Soumis le 2 septembre 2019