2D Zn-Porphyrin-Based Co(II)-MOF with 2-Methylimidazole Sitting Axially on the Paddle-Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS-CoV-2

High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin-based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co(2)(MeIm)] (1), is successfully self-assembled from the zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2-methylimidazole (MeIm) by a facile one-pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle-wheel [Co(2)(-CO(2))(4)] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen. Combining the photosensitizers ZnTCPP and the electroactive [Co(2)(-CO(2))(4)] SBUs, the 2D MOF 1 possesses an excellent ECL performance, and can be used as a novel ECL probe for rapid nonamplified detection of the RdRp gene of SARS-CoV-2 with an extremely low limit of detection ( approximately 30 aM).

Références

Titre
2D Zn-Porphyrin-Based Co(II)-MOF with 2-Methylimidazole Sitting Axially on the Paddle-Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS-CoV-2
Type de publication
Article de revue
Année de publication
2022
Revue
Adv Funct Mater
Volume
32
Start Page
2209743
ISSN
1616-3028
Soumis le 5 janvier 2023